19 research outputs found

    Probabilistic tractography in the ventrolateral thalamic nucleus: cerebellar and pallidal connections

    Get PDF
    The ventrolateral thalamic nucleus (VL), as part of the ‘motor thalamus’, is main relay station of cerebellar and pallidal projections. It comprises anterior (VLa) and posterior (VLpd and VLpv) subnuclei. Though the fibre architecture of cerebellar and pallidal projections to of the VL nucleus has already been focus in a numerous amount of in vitro studies mainly in animals, probabilistic tractography now offers the possibility of an in vivo comparison in healthy humans. In this study we performed a (a) qualitative and (b) quantitative examination of VL-cerebellar and VL-pallidal pathways and compared the probability distributions between both projection fields in the VL after an (I) atlas-based and (II) manual-based segmentation procedure. Both procedures led to high congruent results of cerebellar and pallidal connectivity distributions: the maximum of pallidal projections was located in anterior and medial parts of the VL nucleus, whereas cerebellar connectivity was more located in lateral and posterior parts. The median connectivity for cerebellar connections in both approaches (manual and atlas-based segmentation) was VLa > VLpv > VLpd, whereas the pallidal median connectivity was VLa ~ VLpv > VLpd in the atlas-based approach and VLpv > VLa > VLpd in the manual approach.Peer reviewe

    Polyneuropathy monitoring in Parkinson's disease patients treated with levodopa/carbidopa intestinal gel

    Get PDF
    Objectives Levodopa-carbidopa-intestinal-gel (LCIG) infusion is an effective treatment for advanced PD with motor fluctuations. Polyneuropathy occurs as a complication in 10-15% of patients. We wanted to assess the frequency of polyneuropathy in Finnish advanced Parkinson's disease (PD) patients with continuous LCIG infusion, and the value of different clinical monitoring parameters during follow-up. Materials and methods Patient records of PD patients started on LCIG infusion at Helsinki University Hospital who received nerve conduction studies at baseline and 6 months after treatment initiation were reviewed for epidemiological information, mini mental state examination, baseline and 6 months' UPRDS-III, weight, body mass index, levodopa dose (LD), plasma homocysteine levels, folate, vitamin B6 and B12. Results Out of 19 patients (n = 6 on B-vitamin substitution), two (10.5%) developed new-onset polyneuropathy after initiation of LCIG therapy (n = 0 with vitamin substitution). Neuropathy was associated with significant weight loss (BMI reduction > 1.5), but not with other monitoring parameters. Homocysteine rose significantly in patients not substituted with B-vitamin complex, but not in patients with B-vitamin substitution. Homocysteine changes correlated with LD changes in the absence of vitamin B substitution. After oral B-vitamin substitution, both patients' polyneuropathy remained electrophysiologically and clinically stable. Conclusions Rates of polyneuropathy in Finnish PD patients with LCIG treatment are comparable to previous studies. Patients' weight should be included in regular follow up monitoring and can be used for patient self-monitoring. Vitamin B substitution appears to reduce coupling between levodopa dose and homocysteine and may be useful to prevent polyneuropathy related to LCIG.Peer reviewe

    Cortical beta burst dynamics are altered in Parkinson's disease but normalized by deep brain stimulation

    Get PDF
    Exaggerated subthalamic beta oscillatory activity and increased beta range cortico-subthalamic synchrony have crystallized as the electrophysiological hallmarks of Parkinson's disease. Beta oscillatory activity is not tonic but occurs in 'bursts' of transient amplitude increases. In Parkinson's disease, the characteristics of these bursts are altered especially in the basal ganglia. However, beta oscillatory dynamics at the cortical level and how they compare with healthy brain activity is less well studied. We used magnetoencephalography (MEG) to study sensorimotor cortical beta bursting and its modulation by subthalamic deep brain stimulation in Parkinson's disease patients and age-matched healthy controls. We show that the changes in beta bursting amplitude and duration typical of Parkinson's disease can also be observed in the sensorimotor cortex, and that they are modulated by chronic subthalamic deep brain stimulation, which, in turn, is reflected in improved motor function at the behavioural level. In addition to the changes in individual beta bursts, their timing relative to each other was altered in patients compared to controls: bursts were more clustered in untreated Parkinson's disease, occurring in 'bursts of bursts', and re-burst probability was higher for longer compared to shorter bursts. During active deep brain stimulation, the beta bursting in patients resembled healthy controls' data. In summary, both individual bursts' characteristics and burst patterning are affected in Parkinson's disease, and subthalamic deep brain stimulation normalizes some of these changes to resemble healthy controls' beta bursting activity, suggesting a non-invasive biomarker for patient and treatment follow-up.Peer reviewe

    Pallidal Deep Brain Stimulation Reduces Sensorimotor Cortex Activation in Focal/Segmental Dystonia

    Get PDF
    Background Although deep brain stimulation of the globus pallidus internus (GPi-DBS) is an established treatment for many forms of dystonia, including generalized as well as focal forms, its effects on brain (dys-)function remain to be elucidated, particularly for focal and segmental dystonia. Clinical response to GPi-DBS typically comes with some delay and lasts up to several days, sometimes even weeks, once stimulation is discontinued. Objective This study investigated how neural activity during rest and motor activation is affected by GPi-DBS while excluding the potential confound of altered feedback as a result of therapy-induced differences in dystonic muscle contractions. Methods Two groups of patients with focal or segmental dystonia were included in the study: 6 patients with GPi-DBS and 8 without DBS (control group). All 14 patients had cervical dystonia. Using (H2O)-O-15 PET, regional cerebral blood flow was measured at rest and during a motor task performed with a nondystonic hand. Results In patients with GPi-DBS (stimulation ON and OFF), activity at rest was reduced in a prefrontal network, and during the motor task, sensorimotor cortex activity was lower than in patients without DBS. Within-group contrasts (tapping > rest) showed less extensive task-induced motor network activation in GPi-DBS patients than in non-DBS controls. Reduced sensorimotor activation amounted to a significant group-by-task interaction only in the stimulation ON state. Conclusions These findings support previous observations in generalized dystonia that suggested that GPi-DBS normalizes dystonia-associated sensorimotor and prefrontal hyperactivity, indicating similar mechanisms in generalized and focal or segmental dystonia. Evidence is provided that these effects extend into the OFF state, which was not previously demonstrated by neuroimaging. (c) 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.Peer reviewe

    The visual dorsal stream and reading

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Early application of deep brain stimulation: Clinical and ethical aspects

    No full text
    Deep brain stimulation (DBS) has proven to be a successful therapeutic approach in several patients with movement disorders such as Parkinson's disease and dystonia. Hitherto its application was mainly restricted to advanced disease patients resistant to medication or with severe treatment side effects. However, there is now growing interest in earlier application of DBS, aimed at improving clinical outcomes, quality of life, and avoiding psychosocial consequences of chronic disease-related impairments. We address the clinical and ethical aspects of two early uses of DBS, (1) DBS early in the course of the disease, and (2) DBS early in life (i.e. in children). Possible benefits, risks and burdens are discussed and thoroughly considered. Further research is needed to obtain a careful balance between exposing vulnerable patients to potential severe surgical risks and excluding them from a potentially good outcome. (C) 2013 Elsevier Ltd. All rights reserved

    Pallidal DBS for dystonia in the age of personalized medicine

    No full text
    In response to the correspondence by Albanese and co-workers, we discuss etiology as a factor predicting outcome of pallidal DBS in dystonia, reanalysing our dataset on causes of non-response to pallidal DBS in isolated dystonia by looking only at patients with a diagnosis of idiopathic dystonia at time of surgery. (C) 2017 Elsevier Ltd. All rights reserved

    Verbal Fluency in Essential Tremor Patients: The Effects of Deep Brain Stimulation

    No full text
    ObjectiveTo assess the effects of different frequencies of thalamic Deep-Brain-Stimulation (DBS) on cognitive performance of patients suffering from Essential Tremor (ET).MethodsIn 17 ET-patients with thalamic-DBS, Tremor-Rating-Scale (TRS), standardized phonemic and semantic verbal fluency (VF), Stroop-Color-Word-Test and Digit-span-test were investigated in three randomized stimulation-settings: i) high-frequency stimulation (HFS), ii) low-frequency stimulation (LFS) and iii) OFF-stimulation (DBS-OFF). Paired-samples t-test for TRS and one-way repeated measures analysis of variance for cognitive performance were calculated.ResultsTremor was reduced during HFS (MeanTRS-HFS = 12.9 ± 9.6) compared to DBS-OFF (MeanTRS-OFF = 44.4 ± 19.8, P .05), phonemic and semantic VF differed significantly between the three conditions (FPvf = 5.28, FSvf = 3.41, both P .05).ConclusionsHFS compared to LFS or DBS-OFF significantly reduced tremor but simultaneously worsened VF while working memory and cognitive inhibition remained unaffected. In contrast, LFS enhanced VF but did not ameliorate tremor. The data emphasize the relevance of thalamocortical loops for verbal fluency but also suggest that more sophisticated DBS-regimes in ET may improve both motor and cognitive performanc

    Thalamomuscular Coherence in Essential Tremor: Hen or Egg in the Emergence of Tremor?

    No full text
    Thalamomuscular coherence in essential tremor (ET) has consistently been detected in numerous neurophysiological studies. Thereby, spatial properties of coherence indicate a differentiated, somatotopic organization; so far, however, little attention has been paid to temporal aspects of this interdependency. Further insight into the relationship between tremor onset and the onset of coherence could pave the way to more efficient deep brain stimulation (DBS) algorithms for tremor. We studied 10 severely affected ET patients (six females, four males) during surgery for DBS-electrode implantation and simultaneously recorded local field potentials (LFPs) and surface electromyographic signals (EMGs) from the extensor and flexor muscles of the contralateral forearm during its elevation. The temporal relationship between the onset of significant wavelet cross spectrum (WCS) and tremor onset was determined. Moreover, we examined the influence of electrode location within one recording depth on this latency and the coincidence of coherence and tremor for depths with strong overall coherence (tremor clusters) and those without. Data analysis revealed tremor onset occurring 220 +/- 460 ms before the start of significant LFP-EMG coherence. Furthermore, we could detect an anterolateral gradient of WCS onset within one recording depth. Finally, the coincidence of tremor and coherence was significantly higher in tremor clusters. We conclude that tremor onset precedes the beginning of coherence. Besides, within one recording depth there is a spread of the tremor signal. This reflects the importance of somatosensory feedback for ET and questions the suitability of thalamomuscular coherence as a biomarker for closed-loop DBS systems to prevent tremor emergence
    corecore